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The solution procedure developed in Part I (S.-C. Chang and J. J. Adamczyk, J. Comput. 
Phys. 59 (1985), OOOOOO) is discretized and used to obtain inviscid solutions for subsonic 
flows in a 180” turning channel. It is shown that the current algorithm can accurately predict 
the behavior of weak secondary flows and is capable of generating solutions for strong secon- 
dary flows. Moreover, it is shown that acceptable flow solutions may be obtained after only 
lO20 outer loop iterations. 0 1985 Academtc Press, Inc. 

Quite often in fluid flows, one observes a complex cyclic flow pattern on planes 
normal to the primary flow direction. This flow structure is often referred to as 
“secondary flow.” It is attributed to the streamwise component of vorticity that is 
generated by the deflection of the primary shear flow due to a boundary surface. 
The primary driving force behind this phenomenon is the centrifugal pressure 
gradient in the main flow. The role of viscosity is of secondary importance. Prac- 
tical examples of hardware in which one finds such flows are turbomachinery blade 
rows, transition diffuser ducting and fanjet exhaust mixers. It is well known that the 
prediction and control of secondary flow within these devices can lead to a substan- 
tial increase in their aerodynamic performance. 

One of the first theoretical efforts at describing the generation of secondary flow 
was by Squire and Winter [ 11. This paper described the generation of secondary 
flows in a turning channel, with the fluid assumed to be inviscid. Later Hawthorne 
[2, 31 extended the analysis of Squire and Winter to arbitrary inviscid shear flow. 
This was then followed by the work of Lakshiminarayana and Horlack [4] in 
which the effects of viscosity were included. These works provided the theoretical 
basis of our understanding of secondary flow phenomena. Unfortunately, except for 

* Partial results of this paper were presented at AIAA 6th Computational Fluid Dynamics Con- 
ference, Danver, Mass., July 13-15, 1983. 
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the case of small entry shear or small flow deflection, these analyses do not provide 
a solution procedure for general secondary flows. To circumvent the difficulty, 
many researchers have attempted to integrate directly various approximated forms 
of the Navier-Stokes equations by numerical procedures [S-7]. A notable excep- 
tion is the work of Abdallah and Hamed [S]. They have analyzed the steady, 
rotational, inviscid and incompressible flow in a 90” turning channel by solving the 
continuity equation and two components of the steady Helmholtz equations [9]. 

In this paper, the solution procedure developed in Part I (the preceding paper) is 
used to obtain inviscid solutions for subsonic flows and incompressible flows in a 
180” turning channel. The problem definition is given in Section I and the Appen- 
dix. The finite difference methods are described in Section II. The results of several 
subsonic flow computations are presented in Section III to illustrate the develop- 
ment of secondary flow in a turning channel. For a weak secondary flow at low 
Mach numbers, the computed results are shown to be in excellent agreement with 
the theoretical prediction of Squire and Winter. For large secondary flows two cases 
were analyzed, the first being the generation of secondary flow due to inlet velocity 
shear, the second being the generation of secondary flow due to inlet temperature 
shear. Both cases resulted in the generation of significant nonlinear effects which 
caused the flow pattern to take on a turbulent-like structure. The results of the 
incompressible flow computations are not presented since they reveal no new 
feature. Finally, also in Section III, the efficiency of the current algorithm is 
assessed using the convergence histories of both the inner and outer iteration loops. 

I. PROBLEM DEFINITION 

With the aid of Appendix A, we define in this section the channel geometry 
(Fig. la) and the boundary conditions associated with our flow problems. To 
proceed, a parallelepiped (Fig. lb) in computational space is defined by 

adx’<b, c<x’dd, and O<x3<e (1.1) 

where the coordinates (xl, x2, x3) refer to computational space and a, b, c, d, and e 
are geometric parameters to be specified later. The turning channel is generated 
from the parallelepiped using the transformation (0 < x2 < 1) 

P’ = +(cosh(rcx’) - cos(rcx2)) (1.2) 

-’ cos “x = fi sinh(nx’/2) cos(7rx2/2) 

OJ 2 cosh(nx’) - cos(nx2) 
(1.3) 

x3=x3 (1.4) 

where the coordinates (x’, X2, x3) refer to physical space. It sould be noted that the 
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FIG. 1. A turning channel. (a) The physical space (X3 is suppressed). (b) The computational space 
(x3 is suppressed). 

transformation between Z- (Xi, X2) and WE (x1, x2) is a conformal transfor- 
mation defined by 

Z = (2/7r) ln(sinh(z W/2)). (1.5) 

According to Eqs. (1.2) to (1.4), the values of the metric tensor in computational 
space is given by 

(I.61 

where 

cosh(rrx’) + COS(XC~) 
v= 

cosh(nx’) - cos(7cx2)’ (1.7) 

As a result, g, + 6, (Kronecker delta symbol) as lx’1 -+ +CO. Therefore, in a region 
where lx11 is sufficiently large, the flow equations, the flow description and the 
channel geometry as viewed from both computational and physical spaces are iden- 
tical. We shall assume that both the inlet and exit planes lie in such a region. 

Assuming a parallel entrance flow, it is shown in the Appendix that the inlet con- 
ditions can be specified by an arbitrary axial velocity distribution, an arbitrary tem- 
perature distribution and a uniform pressure distribution. For the current 
investigation, the inlet conditions are explicitly given by (since VW 1 at the inlet, 
these conditions can be given directly in computational space) 

I/’ = v, . 24(x3, a,), p= p=() 

T= T, . u(x3, b,) 

P= P,. 

(1.8) 

(1.9) 

(1.10) 
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Here V,, T,, P,, 6,, and 6, are constants and U(X), 6) is defined by 

24(x3,6)=1+6. $; ( > (1.11) 

where e is the height of the channel. For a given value of 6, u is a normalized linear 
function of x3 with its maximum variation given by 6, i.e., 

1 e - 
s u(x3, 6) dx3 = 1 

e 0 
(1.12) 

and 

6 = u(e, 6) - ~(0, 6). (1.13) 

As a result of this normalization, the constants V, and T, are the average inlet axial 
velocity and the average inlet temperature. 

To simplify the numerical calculations, Eqs. (1.1) to (1.6) of Part I are nondimen- 
sionalized using the procedure described in Part I. By a proper choice of the 
reference state variables P* and T*, the constants P, and T, can always be assigned 
a value of 

PC= T,= 1. (1.14) 

Thus, the inlet llow conditions can be specified solely in terms of V,, 6,, and 6,. It 
is shown in the Appendix that these variables, in turn, specify the substitute flow 
inlet conditions and hence enable us to integrate all the hyperbolic equations to be 
solved in the outer loop. 

TABLE I 

The Boundary Conditions for cp(“), cr(“), and I), 

x’=a 
X2=C 
x2 = d 

x3=0 
x3 = e x’=b 

a@’ o 
-= 

ax3 
de) -=o 
ax3 

*,=o 

+2=0 

p'"'= 0 

@J = 0 

a*, a+, a*, -= - 
a9 ( > dX2+s 

w2 -x0 
ax] 

*3=0 a+, -=o 
a.9 

ai, -=() 
axI 
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The boundary conditions required for the solution of the Poisson’s equations 
(II.18), (11.23), and (11.25) of Part I are given in Table I. These conditions are con- 
sistent with Eq. (11.19) of Part I. As shown in the Appendix, they also are con- 
sistent with the inlet conditions, the solid wall boundary condition (Eq. (A.8)), and 
an exit flow condition which allows the continuous development of secondary flow 
far downstream of the channel bend. 

Finally, it should be noted that the substitute flow is initialized so that the den- 
sity p and the contravariant mass flux vector F’ satisfy the following conditions: 

ap aF’ 
dx’=o, -Q=o, F= = F3 = 0, (1.15) 

These equations coupled with the given inlet distributions for p and F’ uniquely 
determine the initial values of p and F’ within the computational domain. Sub- 
sequently, the contravariant velocity field I” can be evaluated through the relation: 
V’= Fi(p &). The flow field so initialized is consistent with the inlet flow con- 
ditions, the solid wall boundary condition, and the continuity equation. 

II. FINITE DIFFERENCE METHODS 

The finite difference solutions to the various equations which form the inner and 
outer loops are constructed using the grid shown in Fig. 2. This grid is channel con- 
forming with uniform spacing in each direction in computational space. 

In the inner loop the divergence, grad, and curl are approximated by second 
order central difference operators in the interior of the computational domain. At 
the boundaries the normal derivative operator which appears in these expressions is 
approximated by either a second order forward or backward finite difference 
operator. The finite difference form of the Laplacian is fixed by the Fast Solver 
[lo] which is used to solve the Poisson equations. 

In the outer loop, the hyperbolic equations are numerically integrated using a 
characteristic marching procedure. This integration procedure will be explained 
using Eq. (1.20) of Part I as an example. We assume that the computational 
domain is bounded by four solid walls in x2 and x3 directions (see Fig. 3a). We 
further assume that V’ is positive everywhere and that all the values of r are known 
on the grid plane GPl. 

For an interior grid point A on GP2 at which r is to be evaluated, a point Q’ on 
GPl is found (see Fig. 3b) such that the vector Q’A is in the direction of the known 
velocity vector at A (denoted by V’(A)). The velocity vector at Q’ (denoted by 
V(Q)) is computed by linearly interpolating (four point bivariate interpolation 
[ 111) the velocity vectors at the four surrounding grid points A’, B’, c’, and D’. 
The average of V(Q) and V’(A) is then evaluated and set equal to p(A). Next a 
point Q is located on GPl such that the vector QA points in the direction of B’(A). 
The value of r at point Q (denoted by r(Q)) is then found by linear interpolation 



46 CHANG AND ADAMCZYK 

J 

-1 

FIG. 2. A uniform grid in computational space (I, J, and K, respectively, are grid indices in x’, x2, 
and x3 directions). 

using the known value of r at A’, B’, C’, and D’. In the final step, r is evaluated at 
point A (denoted by z(A)) from the equation [12] 

6X’ 
44) = z(Q) + - 

V’(A 1 
(11.1) 

where 6x’ is the distance between GPl and GP2. If point A is a boundary grid 
point, the above procedure becomes two-dimensional (the normal velocity com- 
ponent vanishes at the channel walls). 

The stability of the above algorithm is insured by subdividing each grid interval 
Ax’ into M equally spaced subintervals. The length of these subintervals, 8x’, is 
chosen such that the Courant-Friedrich-Lewy stability criteria 

(11.2) 

are satisfied everywhere on the refined grid. The refined grid velocity field is 
obtained by linearly interpolating the coarse grid velocity field provided by the 
inner loop. 

b -6X1 

‘C’ 

FIG. 3. Marching method for hyperbolic equations. (a) Two adjacent grid planes GPl and GP2. 
(b) Construction of a characteristic line. 
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Once the hyperbolic equations have been solved, the vorticity field is updated 
using a finite difference representation of the equation 

h,~+S~)+(Ir-I)(r~+P~)] (11.3) 

where /I is an arbitrary constant. This equation is equivalent to Eq. (1.19) of Part I. 
In this study, the finite difference form of the expression on the right side of Eq. 
(11.3) was obtained in the following way: First, the grad operators inside the 
bracket are approximated using the corresponding central difference operators. 
After the quantities inside the bracket have been evaluated at all grid points, the 
right side of Eq. (11.3) is then evaluated by approximating the curl operator with 
the corresponding central difference operator. The only exception occurs at the 
boundaries where the normal derivative is approximated by either a forward or 
backward second order difference operator. This finite difference form of Eq. (11.3) 
was chosen such that the central difference form of a(&Qj)/axj=O (see Eq. 
(11.21) of Part I) is identically satisfied at all interior grid points. 

For a hornentropic flow, Eq. (11.3) may be simplified by dropping the terms 
S(ap/axk) and p(aL?/axk). Similarly, for a hornenergetic flow, the terms h,(dr/axk) 
and ,r(#z,/axk) may be dropped. Finally, it is noted that the numerical results to be 
presented in Section III are obtained by assuming /I = 0.5. It has been our 
experience that the stability of the outer loop iterations is best maintained using 
this value of /I. 

III. NUMERICAL RESULTS 

This section will be devoted to assessing the ability of the solver to capture the 
physics of the development of inviscid secondary flows in a turning channel. In 
order to perform this assessment, three problems were analyzed. For each problem, 
the values of the parameters previously defined are tabulated in Table II. In 
addition, the values of the grid parameters NXI, NX2, and NX3 which define the 
number of grid intervals in the x1, x2, and x3 directions are also tabulated along 
with the value of NXlS which equals the number of subintervals in a grid interval 
dx’. The values of the parameters c and d were chosen to yield a channel of nearly 
constant width (approximately equal to (d-c)) in physical space. For all three 
problems the specified inlet flow conditions and channel geometry ensure subsonic 
flow conditions. The average inlet Mach number (computed using V, and T, = 1) 
for the first problem is 0.0845 and therefore the flow is nearly incompressible. For 
the remaining two problems, its value is 0.4 and the flow is modestly compressible. 

To present our numerical results, live stations A, B, C, D, and E (Fig. 1) are 
chosen along the flow channel. They are channel cross sections defined by x1 = 0, 
x1 = f, x1 = 3, xi = 1, and x’ = 2, respectively. These stations are slightly curved in 
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TABLE II 

Flow Problems and Their Delining Parameters 

Geometric parameters Flow parameters Grid parameters 

Problem a b c d e y V, 6, 6, NXl NX2 NX3 NXlS 

No. 1” -2.0 2.0 0.45 0.55 0.1 1.4 0.1 0.01 0.0 72 6 6 12 
No. 2b 
No. 3’ 

’ Hornentropic and linear. 
b Homentropic and nonlinear. 
’ Inhomentropic, inhomenergetic, and nonlinear. 

physical space. In presenting our results in physical space, we shall neglect the effect 
of surface curvature and consider these stations to be flat. 

The first problem was constructed to examine the ability of the solver to 
reproduce the theoretical results of incompressible weak secondary flow theory. For 
this problem the specified inlet flow conditions lead to the establishment of a 
hornentropic flow. Thus this flow was calculated without the aid of the Munk-Prim 
substitution principle. For the limiting case of incompressible weak secondary flow. 
Squire and Winter [ 1 ] derived the expression 

(= 20,0 (111.1) 

for the growth of secondary vorticity along a streamline. In this equation, 52, is the 
inlet vorticity of the streamline, 5 is the secondary vorticity at any point on the 
streamline where the local angle of deflection (i.e., the angle between the streamline 
direction at the inlet and its direction at a point in the channel) is 9. For the chosen 

- --4- - ---+ 

FIG. 4. Secondary velocity field for Problem 1. (a) Station A. (b) Station B. 
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TABLE 111 

Numerical Values of </(2Q,@) at Various Stations after 40 Outer Loops Iterations 
(Problem No. 1, C&=0.1) 

Station 

49 

A B C D E 

0 (radian) 1.5708 2.4664 2.8965 3.0552 3.1379 

W-Qo~) 0.9978 0.9967 0.9933 0.9879 0.9682 

- - - - - - - _ 
b 

- --------__ 

--C-t----- 

---- ------- 

FIG. 5. Secondary velocity tield for Problem 2. (a) Station A. (b) Station B. (c) Station D. 
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channel the values of 19 are more or less constant across any cross section. Since the 
imposed inlet flow field is such that all streamlines share a common value of 52, 
(Q,= ?iV/e for the current problems) it is seen that 5 should be nearly uniform 
across any cross section of the channel. 

The secondary velocity fields at Stations A and B for the first problem are shown 
in Fig. 4. Comparing the magnitude of the displayed velocity vectors to the inlet 
area averaged velocity of V, = 0.1 (the length scale of the vectors is indicated by a 
standard vector at the bottom-right corner of each plot), they are seen to be very 
small. Thus the theory of Squire and Winter should be applicable to this problem. 
Both figures show the generated secondary velocity field exhibits a solid body 
rotational pattern over most of the cross section, which indicates the secondary vor- 
ticity is indeed nearly uniform over each cross section. The only exception occurs in 
the corner regions where a solid body rotation of fluid is impossible. 

Furthermore, Fig. 4 indicates that one may view the line defined by x2 = 0.5 and 
x3 = 0.05 (according to Eq. (1.1) and Table II, this line passes through the central 
grid point at all cross sections) as a streamline since the secondary velocity is nearly 
zero along this line. At the live points where this approximate streamline intersects 
Stations A, B, C, D, and E, the values of 8 and [/(2Q,8) for the first problem are 
tabulated in Table III. The numerical results are seen to be in excellent agreement 
with Eq. (111.1). These results also indicate that, as the flow proceeds further down 
the channel and the secondary velocity grows larger, nonlinear effects begin to 
come into play and the agreement between linear theory and numerical results 
deteriorates. 

For the second problem, a significantly larger value of inlet velocity shear was 
chosen to assess the ability of the solver to capture the physics associated with large 
secondary flows. Figure 5 shows the secondary velocities that developed at 
Stations A, B, and D. At Station A, the secondary velocity field is well established, 
exhibiting the solid body rotation pattern predicted by the linear analysis of Squire 
and Winter. As the flow proceeds further around the bend, the local secondary 
velocity field near the four corners grows in magnitude, with a maximum 
approaching the average inlet velocity V, =0.4733. This flow structure can no 
longer be predicted by the linear theory of Squire and Winter. At Station D which 
lies well downstream of the channel bend, the nonlinear behavior grows more 
evident as two additional vortices appear in the upper-left and lower-right corners. 
Further downstream from Station D, the secondary flow field becomes ill-defined 
and begins to take on the appearance of turbulence (not shown). 

To study other aspects of this homentropic flow, the contours of constant total 
pressure P, at Stations A, B, and D were computed and are shown in Fig. 6. Since 
a surface of constant P, is a stream surface (see Eq. (1.12) of Part I), these 
illustrations also represent the cross-sectional views of several stream surfaces. For 
the current problem, the inlet flow conditions vary only in the x3 direction. 
Therefore, the stream surfaces are horizontal at the channel entrance. The contour 
values of PO were chosen to yield contours which coincide with the horizontal grid 
lines at the entrance to the channel, 



SECONDARY FLOW APPLICATION 51 

FIG. 6. Total pressure contours for Problem 2. (a) Station A. (b) Station B. (c) Station D. 

As the flow proceeds down the channel, the stream surfaces are rotated by the 
secondary velocity field to near vertical slighty downstream of Station A. The only 
exception occurs at the upper-right and lower-left corner regions where they tend to 
become clustered. This phenomenon can be explained by recalling that every stream 
surface depicted in Fig. 6 is swept out by a group of fluid particles which originally 
passed through a horizontal grid line at the channel entrance. As the flow proceeds 
down the channel, the fluid particles initially attached to the right (left) side wall 
will remain attached as long as streamline bifurcation does not take place. In 
addition these particles are transported toward the top or bottom walls by the 
secondary velocity field. Since the top and bottom walls are stream surfaces on 
which PO is either a maximum or a minimum (i.e., maximum on the top wall, 
minimum on the bottom wall), the fluid particles on the side walls can never reach 
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the top or bottom unless equation (1.12) of Part I is violated. They become 
stagnated when viewed in the cross-sectional plane. This leads to the clustering 
phenomena depicted in the figure. At Station D, the total pressure contour becomes 
highly contorted and also shows additional clustering in the upper-left and lower- 
right corner regions. 

The secondary flows which we have discussed so far have all been generated as a 
result of an inlet velocity shear. In Problem 3, we examine the secondary flow as 
generated by a temperature shear. The entering velocity field is uniform, while the 
inlet temperature and entropy vary in only the x3 direction. The solution to this 
general Munk-Prim problem was obtained assuming the substitute flow to be 
hornentropic. 

The resulting secondary velocity fields developed at Stations A, B, and D are 
shown in Fig. 7. Comparing these results with those on Fig. 5, it is seen that the 
secondary velocity fields are very similar except for their sense of rotation. This 
result can be explained by recalling that the streamline pattern for Problem 3 is 
identical to that of the hornentropic substitute flow from which it was constructed. 
This substitute flow has a negative velocity shear (i.e., axial velocity decreases in the 
x3 direction) and uniform temperature and entropy distributions at the channel 
inlet. These inlet flow conditions with the exception of the sign of the inlet velocity 
shear are very similar to those for Problem 2. This accounts for their close resem- 
blance. Furthermore, examination of the contours of constant total pressure (not 
shown) further corroborated the close resemblance of these two problems. 

This section is concluded with a discussion on the convergence histories of the 
inner and outer loops. To proceed, let 

R”‘(Z) fEf 1 
L 

IV (‘+ “(I, J, K) - vqz, .I, K)12 
J,k = I 

I”’ (;I;: ;: ::::-). (111.2) 

Here V”‘(Z, J, K) may denote the velocity vector at the grid point (Z, .Z, K) (see 
Fig. 2) after 1 iterations during a pass through the inner loop. It may also denote a 
similar vector after 1 outer loop iterations (i.e., 1 passes through the inner loop). 
Furthermore, it should be noted that the summation inside the bracket runs 
through the grid points with a common value of Z. The parameter R”‘(Z) is an 
overall measure of the change of the velocity held at a grid plane of index Z during 
the (I+ 1)th iteration. A similar parameter which measures the change of the entire 
velocity field is 

p d!f 
1 Iv’+ “(I, J, K) - vqz, J, K)I* 

1,J.k = I 1 
l/2 

(l=O, 1, 2 ,... ). (111.3) 

Here the summation runs through all the grid points. Moreover, to measure the 
convergence after f iterations, one introduces 

O”‘(Z) Sf -log(R”‘(Z)/R’O’(Z)) (I= 0, 1, 2,...) (111.4) 



SECONDARY FLOW APPLICATION 53 

. - .  + 

-  -  

_ _ 

I  _ 

I  .  

% 

.  

.  .  

.  _ 

-  -  

-  -  

b - 

- - - _ - 

- - _ . . 

- - . , < 

. , , 

\ 

8 

I 3 , 

, , , 

O.?OO_, I \ - - - - c , , I 

c_--.s-- 

4---t---f--- 

---------” 

- _ - - - - ’ ’ ’ ’ 

’ _ - - _ ’ ’ ’ ’ ’ 

’ ’ . . ’ ’ ’ ’ ’ 

’ ’ ’ ’ ’ ’ 

1 1 1 

7 ’ ’ ’ ’ ’ 1 

% . - ” ’ “1 

- - - ““‘I 

. _ - - * ““I 
0.300---e 

----e---I, 

c _r-------.--- 

FOG. 7. Secondary velocity field for Problem 3. (a) Station A. (b) Station B. (c) Station D. 

and 
0’” dg _ log( @“/p) (/=O, 1, 2 )... ). (111.5) 

It is clear that O”‘(I) and U(‘), respectively, are the orders of magnitude in the 
reduction of the values of R(‘)(Z) and R”’ versus their values at 1= 0. 

For the inner loop iterations, we shall assume that I=n/2 where n is the inner 
loop iteration number referred to in Part I. In other words, a combined application 
of Scheme A and Scheme B (see Section II.3 of Part I) is counted as one iteration 
whenever the iteration number 1 is referred to. This new way of counting I is con- 
sistent with the fact that the function G defined in Eqs. (B.lO) and (B.ll) of Part I 
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is an amplification factor per combined application of Scheme A and Scheme B. 
With this understanding, the histories of 0 (‘) @(37), @‘)(55), and 0(*)(73) for , 
Problem 1 during the first pass through the inner loop are shown in Fig. 8a. It is 
seen immediately that the inner loop iterations converge rapidly and the con- 
vergence histories at Stations A, D, and E (for Problem 1, these stations corres- 
pond to the grid planes with Z= 37, 55, and 73, respectively) are distinctly different. 
These features, as we shall see, may be qualitatively explained by using the results 
of a stability analysis presented in Appendix B of Part I. 

To proceed, it is noted that the function G, defined in Eq. (B.14) of Part I is a 
theoretical parameter measuring the local amplification rate (per iteration) of a 
high wave number disturbance. With the aid of Eqs. (1.6) and (1.7), this parameter 
can be expressed as 

Go = Z-(x’, x2) 2’ 
cos2( xx’) 

cosh*(nx’) - cos2(rcx2)’ 
(111.6) 

Noting that Z,(c, d) 2’ the maximum value of Z(x’, x2) in the domain defined by 

2>x’> -2 and d>x22c (111.7) 

it is seen from Table IV that T(x’, x2) d 2.51 x lo-* within the computational 
domain for Problem 1. With the interpretation given to ZJx’, x2), one would expect 
the inner loop iterations to converge raidly. This expectation is confirmed by the 
fact that OC4) = 5.10, i.e., the value of R(l), on the average, is reduced by more than 
one order of magnitude per iteration. Moreover, it is interesting to note that the 
average increment of O(‘) per iteration (= 1.275) may be qualitatively predicted 
using the value of -log[Z,(c, d)] (= 1.60). 

To study the convergence histories at individual stations, one notes that 
Z,(t; c, d) 2’ the maximum value of ZJx’, x2) in the subdomain defined by 

xl=t and d>x’>c. (111.8) 

As a result, it is seen from Table IV that, for Problem 1, the maximum values of 

TABLE IV 

Numerical Values of r,,,(c, d) and r,,,(l; c, d) 

c = 0.45 c = 0.65 
d=0.55 d=0.75 

rm(c, 4 2.51 x lo-* (1.60) 1.0 (0.1 
r,,,(O; c, 4 2.51 x 1O-2 (1.60) 1.0 (0.1 
rm(l; c, 4 1.82 x 1O-4 (3.74) 3.73 x lo-’ (2.43) 
rnJ.2 c, 4 3.41 x lo-’ (6.47) 2.79 x lo-’ (4.55) 

Note. The values of -log[T,,,(c, d)] and --log[f,(<; c, d)] are given in parentheses. 
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f(xl, x2) at Stations A (x’ =O), D (x’ = LO), and E (x’ =2.0) are 2.51 x 10p2, 
1.82 x 10p4, and 3.41 x 10p7, respectively. Based on the interpretation given to 
f(xl, x2), it is predicted that O”‘(73) > O”‘(55) > O”‘(37). Again, this prediction is 
confirmed by Fig. 8a. However, the results shown in Fig. 8a also indicate that the 
initial rapid convergence at Station E eventually is slowed down by slower con- 
vergence at other stations. This interdependence between convergence at separate 
stations obviously cannot be accounted for by a local stability analysis like ours. 

To further evaluate the current inner loop stability analysis, a new set of con- 
vergence histories is shown in Fig. 8b. These new histories are generated using the 
same defining parameters as in Problem 1 except that the values of the geometric 
parameters c and d are changed to c = 0.65 and d= 0.75. With these changes, the 
flow channel generated using Eq. (1.5) becomes a convergingdiverging turning 
channel which is shown in Fig. 9. Furthermore, the maximum value of T(x’, x2) 
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FIG. 8. Convergence histories during the first pass through the inner loop. (a) Problem 1 (c=O.45, 
d=OSS). (b) Problem 1 with modified computational domain (c =0.65, d =0.75). (c) Problem 2 
(c = 0.45, d = 0.55). 
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FIG. 9. A converging-diverging turning channel (X3 is suppressed). 

within the domain of the new channel is elevated to 1 (see Table IV). According to 
stability condition Eq. (B.15) of Part I, the continuous version of the inner loop 
iterations is on the verge of instability. This observation correlates very well with 
the fact that the relation between the parameter O(‘) and the iteration number I is 
represented by a nearly horizontal line. Similarly, the drastically different histories 
of 0”‘(37), 0”‘(55), 0”‘(73), can also be explained by using the fact that the 
maximum values of T(x’, x’) at Stations A, D, and E are 1.0, 3.73 x 10e3, and 
2.79 x 10 - 5, respectively. 

In spite of the fact that the current inner loop stability analysis is based upon 
several limiting assumptions and intended only for the continuous version of the 
inner loop iterations, it has been shown that, for a nearly incompressible flow, this 
analysis is a useful tool for predicting the stability and the convergence rate of a dis- 
cretized version of the inner loop iterations. Since the current stability analysis 
assumes that the iterative increments of the mass density are negligible, in principle, 
this analysis should be of little use in explaining the convergence behavior of the 
inner loop iterations whenever a compressible flow is involved. However, in reality, 
the above assessment turns out to be overly pessimistic. 

As noted previously, the flow associated with Problem 2 is modestly com- 
pressible. To assess the applicability of the current stability analysis beyond the 
domain of incompressible flows, a set of convergence histories for Problem 2 is 
shown in Fig. 8c. In the study of these histories, it should be noted that a finer grid 
is used in Problem 2. As a result, the parameters 0”‘(73), O”‘( 109) O”‘( 145) 
respectively, are the measures of convergence at Stations A, D, and E. A com- 
parison between Figs. 8a and c reveals that the history of overall convergence 
(represented by the parameter 0”‘) for Problem 2 is very similar to that for 
Problem 1. Since these two problems have the same metric tensor field and the 
predictions of the inner loop stability analysis are dependent only on this tensor 
field, the similarity is a natural result of the current stability analysis. Therefore, it 
indicates that the inner loop stability analysis is still useful in predicting the overall 
convergence behavior of the inner loop iterations. On the other hand, the same 
comparison also reveals that the differences among the convergence histories at 
individual stations are much smaller in the case of Problem 2. It appears that the 
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interdependence between convergence at separate stations is enhanced with the 
introduction of a compressible flow. 

As in the case of Problem 1, Problem 2 can be modified by adjusting the values 
of the geometric parameters c and d to c = 0.65 and d = 0.75. For this modified 
problem, iterations fail to converge during the first pass through the inner loop. 
This failure is not entirely unexpected since the results of the inner loop stability 
analysis indicate that the inner loop iterations are on the verge of instability. 

The above discussions demonstrate rather convincingly that the metric tensor g,j 
plays a key role in determining the stability and the convergence rate of the inner 
loop iterations. Since the metric tensor g, and the corresponding local amplification 
factor G, are functions of the coordinate transformation linking the computational 
domain and the physical domain, a lesson which can be drawn from the above dis- 
cussions is that the coordinate transformation should be chosen such that the 
maximum value of G, in the computational domain is as small as possible. Further- 
more, these discussions also point to the need to improve the current inner loop 
iterative procedure which becomes unstable or inefficient whenever the stability 
condition (B.15) of Part I is not satisfied or marginally satisfied. 

To study the convergence histories during the outer loop iterations, two sets of 
histories corresponding, respectively, to Problems 1 and 2 are shown in Figs. 10a 
and b. It is noted that, in the generation of these histories, 5 inner loop iterations 
are executed during each pass through the inner loop. For Problem 1, the histories 
of o(l), 0”‘(37), 0”‘(55), and O”‘(73) are very similar and follow a simple pattern: 
The values of these parameters experience a rapid rise during the first 4 or 5 
iterations. After a transition period of 2 or 3 more iterations, the initial phase of 
rapid increase comes to an end and is followed by a new phase of much slower 
increase. Based on these histories, it appears that the numerical results obtained 
after 10 outer loop iterations are within l-2% of the final converged results. This 
assertion is also supported by the fact that the numerical results of ((/2Q,8) 
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FIG. 10. Convergence histories during the outer loop iterations. (a) Problem I. (b) Problem 2. 
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obtained after 10 outer loop iterations are within 1% of those obtained after 40 
iterations. 

For Problem 2, the convergence histories at individual stations vary widely. As 
shown in Fig. lob, after only a few iterations, the convergence at Station A is far 
more advanced than that at Station D which, in turn, is more advanced than that 
at Station E. One apparent factor behind this phenomenon is the increasing com- 
plexity of the secondary flow structure occurring downstream of the channel bend 
(see Figs. 5a to c). This increasing complexity apparently makes it more difficult for 
the iterative solutions to converge at a downstream station than at an upstream 
station. For Problem 2, a reasonable degree of convergence may be achieved at the 
channel bend (Station A) with lo-20 iterations while it may require 100-200 
iterations to reach the same degree of convergence at the exit plane (Station E). 

CONCLUSIONS 

The numerical results obtained using the current algorithm show that it can 
accurately predict the behavior of weak secondary flows and is capable of 
generating solutions for strong secondary flows. Furthermore, it is shown that acep- 
table flow solutions may be obtained after only lo-20 outer loop iterations. 

An evaluation of the convergence histories during a pass through the inner loop 
reveals that the simple inner loop stability analysis presented in Part I is indeed a 
powerful tool for predicting the stability and the convergence rate of the inner loop 
iterations. It also points to the need to improve the current inner loop iterative 
procedure which is restricted by a stability condition. As a result, an improved 
procedure is being developed. The results of this study will be published in the near 
future. 

APPENDIX: INLET FLOW CONDITIONS, OUTFLOW CONDITIONS, 
AND SOLID WALL CONDITIONS 

In this appendix, we restrict the analysis to flows which enter the curved channel 
described in Section I with parallel streamlines. Such flows have inlet conditions 
described by the equations 

v’ = r(2, x3), v*= v3=0 (A.11 

P=P, (A-2) 

and 

T= 4(x2, x3) (A.3) 

where P, is a constant and r, q are arbitrary functions of x2 and x3. As noted in Sec- 



SECONDARY FLOW APPLICATION 59 

tion I, far upstream and downstream of the channel bend, the values of the metric 
tensor and thus the forms of fluid dynamic equations are identical in computational 
and physical space. As a result, Eqs. (A.l) to (A.3) are valid in both spaces. Using 
Eqs. (A.l) to (A.3), it can be shown that, at the inlet, 

(A.4) 

(A.51 

With the help of Eqs. (II.l), (11.3), and (11.4) of Part I, Eqs. (A.l), (A.4), and (AS) 
can be used to establish the inlet conditions for the substitute flows. 

Since the streamlines of the incoming flow are parallel, the inlet streamwise vor- 
ticity Q’ must vanish. From Eq. (11.1) of Part I, the inlet streamwise vorticity Q” of 
the corresponding substitute flow must also vanish. According to Eq. (1.19) of 
Part I, a choice for the inlet distributions of t’ and p’ which yields 0” = 0 at the 
inlet is 

t’=p’=O. (A.61 

With the inlet distributions of z’ and $ established, the solution of their respective 
hyperbolic equations is uniquely defined. 

The construction of the appropriate inlet boundary conditions (BCs) for tii, cp(“), 
and cr(“) is based on the assumption that the inlet flow conditions do not vary dur- 
ing the course of iterations. As a result, Eqs. (11.20), (11.24), and (11.26) of Part I 
require that, at the inlet, 

a+, w2=o --- 
ax2 ax3 9 

(n = 3, 5, 7 )... ), (A.7) 

and 

aq(n) o 
== (n = 2, 4, 6 ,... ). 

A choice of the inlet BCs for Il/;, cp’“‘, and a’“) which is consistent with both the 
above conditions and Eq. (11.19) of Part I is given in the first column of Table I. 

At the solid walls of the channel, we require the velocity component normal to 
the walls to vanish. This requirement may be expressed in the tensor form 

Vin’=O (A.8 1 

where Vi and n’ are, respectively, the covariant velocity vector and the con- 
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travariant normal vector at any point on the wall. For the numerical example 
treated in Section III, the solid walls are located at x2 = c, x2 = d, x3 = 0, and x3 = e 
(see Fig. 1). From Eqs. (A.8) and (11.9) of Part I, and the fact that g,= 0 if i#j, 
the boundary conditions at these walls become 

v,=P=o at x*=c or x*=d (A.9) 

V3=F3=0 at x3=0 or x3=, (A.lO) 

The above BCs are satisfied by the initial flow field. According to Eqs. (11.20), 
(11.24), and (11.26) of Part I, they can be maintained during the course of iterations 
by imposing the following conditions: 

(a) At x2=c or x2=d, 

a+1 w3 o 

---= ? 

ax3 ax1 

aa(") = o 
a.2 (n = 3, 5, 7,...) 

and 

(n = 2, 4, 6,...). 

(b) At x3=0 or x3==e, 

a$, ah_, 
--i---T-- > ax ax 

adn) = o 
a2 

and 

(n = 3, 5, 7,...) (A.12) 

(n = 2, 4, 6,...). 

(A.ll) 

A choice of the BCs for II/,, cp”“, and cr@) at the solid walls which is consistent with 
both the above conditions and Eq. (11.19) of Part I is given in the second and third 
columns of Table I. 

At the channel exit, a fixed set of outflow conditions are directly imposed on the 
substitute flow in computational space. The initial outflow conditions are identical 
to the initial inlet flow conditions. The exit BCs for $i, cp(‘), and a”” are given in 
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the fourth column of Table I. These BCs ensure that Eq. (11.19) of Part I is 
satisfied, and in the limit of incompressible flow yield 

avp -=O 
axI 

for any n. 
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